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Abstract
The analytic solution to the dynamics of the Sherrington–Kirkpatrick model
was developed in the 1990s. It involves directly measurable out-of-equilibrium
quantities, and thus addresses the questions relevant to an experimental system.
We here review the out-of-equilibrium relaxation of this model and how it
compares to experimental measurements.

PACS numbers: 05.70.Fh, 75.10.Nr, 75.50.Lk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Most analytic studies of spin-glasses carried out before the early 1990s focused on their
Gibbs–Boltzmann measure. The use of the replica trick, the cavity method and the Thouless–
Anderson–Palmer (TAP) approach yielded a rather complete description of the equilibrium
states of the Sherrington–Kirkpatrick model [1] and other disordered systems. The picture
that emerged is one of an extremely complex free-energy landscape with many minima, the
lowest of which are the equilibrium ‘pure states’. The geometrical organization of these states,
and their relative weights in the equilibrium measure are the main objects in the Parisi theory
[2], at the centre of which is the disorder averaged functional order parameter P(q) giving the
probability that two equilibrium configurations have an overlap q.

A much more difficult programme, not quite completed yet, concerns the understanding
of the organization of the landscape away from the equilibrium configurations. Questions
such as the metastable state stability, their basins of attraction, and the nature of the barriers
separating them, have proven to be much harder to answer in an unambiguous way. This more
detailed knowledge of the landscape may seem a necessary condition for the understanding
of the experimental, non-equilibrium situation. Surprisingly enough, it turns out that a direct
solution of the out-of-equilibrium dynamics is in fact quite simple.
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The dynamic approach was pioneered by Sompolinsky and Zippelius in the early 1980s,
as a method to avoid the use of replicas for the calculation of equilibrium quantities [3].
They introduced the general framework and succeeded in calculating the high-temperature
quantities. The low-temperature situation turned out to be more complicated, and the problem
of finding a true dynamic equilibrium solution remains open to this day.

An alternative approach, developed in the early 1990s, is to study the out-of-equilibrium
dynamics starting from a quench in temperature, just as in the experimental protocols [4, 5].
Although one might have expected that such a situation is hopelessly difficult, as it involves the
landscape far from equilibrium, including the basins of attraction and barriers associated with
metastable states, it turns out that the actual analytic solution is only slightly—if at all—harder
than the equilibrium one using replicas.

In general, the Gibbs–Boltzmann measure can be explored with a stochastic process that
satisfies detailed balance. In order for the system to equilibrate, the limit of large times is
taken before the thermodynamic limit:

lim
N→∞

lim
t→∞ . (1)

Times are measured after a preparation instant, typically the moment when an instantaneous
quench into the high- or low-temperature phase is performed and temperature is henceforth
kept constant. The order of limits (1) guarantees ergodicity since barriers can be overcome at
sufficiently long times for finite N. The equilibrium thermodynamical values of any operator
O are then obtained as the long-time limit of noise averaged time-dependent observables,
〈O〉eq = limN→∞ limt→∞〈O(t)〉.

The existence of divergent barriers in spin-glass mean-field models led Sompolinsky
[6] to postulate that these systems relax in a set of hierarchically ordered timescales that
eventually diverge with N. These N-dependent timescales entered the solution proposed for
the saddle-point equations of motion via the time-decay of the correlation and response
functions. In this  ansatz, although equilibrium was assumed, the fluctuation–dissipation
relation between correlation and response was violated. As several authors pointed out, this
is clearly inconsistent [2, 7, 8]: the problem can be traced back to the fact that the saddle
point dynamic equations are only valid when N → ∞ and the times are kept finite. In
any event, both the existence of many timescales and the important role of the fluctuation–
dissipation relations were found to be crucial features of the problem that reappeared in later
developments.

A different situation, closer to the experimental procedure, is to consider the relaxation
of infinite systems at long but finite times using initial conditions that are not correlated with
the quenched disorder [4]. The order of limits is then

lim
t→∞ lim

N→∞
. (2)

Divergent barriers in the thermodynamic limit imply ergodicity breaking: the relaxational
dynamics does not explore the full phase-space in finite times at large N. In fact, there is no
equilibration time teq such that for all subsequent times the system reaches either the Gibbs–
Boltzmann distribution or any time-independent distribution in a fixed, restricted sector of
phase space. The dynamics is for all times something different from local equilibrium. This
is the phenomenon of aging: the relaxation of the system depends on its history at all times.
Though aging effects lie beyond the scope of thermodynamics, they have been observed in
numerous disordered systems. As we shall see below, the dynamics of mean-field disordered
models (2) capture aging phenomena with similarities and differences from what is observed
experimentally.
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In what follows we summarize what is known about the out-of-equilibrium dynamics
of the Sherrington–Kirkpatrick (SK) model [1]. We describe the analytic solution to the
relaxational dynamics in the limit (2) [5, 9] and we briefly confront its behaviour to the one
observed in experimental systems.

2. The Sherrington–Kirkpatrick (SK) model

The SK Hamiltonian is H = −∑N
i<j Jij sisj where the interaction strength Jij are independent

random variables with a Gaussian distribution with zero mean and variance
[
J 2

ij

] = 1/(2N).
The square brackets stand for the average over the couplings. The spin variables take values
±1 [1].

Although the natural dynamics for Ising spin systems are of Glauber [10] or Monte Carlo
type, these are not well adapted to implement analytical calculations. It is then preferable to
transform the discrete variables into continuous ones and to use Langevin dynamics [3]. The
Hamiltonian of the soft-spin SK model is then

H = −
N∑

i<j

Jij sisj + a
∑

i

(
s2
i − 1

)2
+

1

Nr−1

N∑
i1<···<ir

fi1...ir si1 . . . sir , (3)

−∞ � si � ∞,∀i. Letting a → ∞ one recovers the Ising case, although this is not essential.
Additional source terms (fi1...ir time independent) have been included. If r = 1 the Zeeman
coupling to a local magnetic field fi is recovered.

The dynamics is given by the Langevin equation

�−1
0 ∂tσi(t) = − δH

δσi(t)
+ fi(t) + ξi(t). (4)

�0 determines the timescale and it is henceforth set to 1. ξi(t) is a Gaussian white noise
with zero mean and variance 2kBT and we set kB = 1 hereafter. fi(t) represent any other
perturbing force. For example, non-potential forces are important in the analysis of rheological
experiments and are mimicked as

fi = ε
∑
j �=i

J a
ij sj (5)

with J a
ij being an antisymmetric matrix, J a

ij = −J a
ji . Forces that oscillate in time can be used

to mimic the slow relaxation under shaking of systems such as granular matter. Such forces
maintain the system in a driven out-of-equilibrium regime even if the limit (1) is considered.
The mean over the thermal noise is hereafter represented by 〈. . .〉.

The dynamics of a Langevin process is usually expressed with a functional integral for the
generating functional by using the so-called Martin–Siggia–Rose method. As De Dominicis
first pointed out, one does not need to use the replica trick to analyse the relaxation of models
with quenched disorder if the initial condition is not correlated with the quenched randomness
[11]. The analysis of the relaxational dynamics of a disordered model is thus considerably
more straightforward than that of the statics, in particular since all observables have a very
clear physical interpretation and can be easily and directly accessed with experiments and
numerical simulations.

The sample-averaged dynamics for N → ∞ is entirely described by the evolution of the
two-time correlation and the linear response functions [3],

C(t, t ′) ≡ 1

N

N∑
i=1

[〈si(t)si(t
′)〉] R(t, t ′) ≡ 1

N

N∑
i=1

[
δ〈si(t)〉
δfi(t ′)

∣∣∣∣
f =0

]
.
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The square brackets denote disorder average. Exact dynamic equations for the evolution of
these dynamic macroscopic order parameters, in the strict large N limit taken at the outset
of the calculation, have been written down by Sompolinsky and Zippelius [3]. They are
rather cumbersome because, just as in the static case, the spin variables cannot be explicitly
integrated away. Several paths can be followed to approximate the effect of the quartic term
introduced by the soft-spin potential. One possibility is to use a mode-coupling approximation
[12]. Another possibility is to focus on the dynamics close to the critical temperature, use the
fact that the transition is expected to be second order, and deal with the dynamic counterpart
of the ‘truncated model’ introduced by Parisi for the equilibrium case.

All parameters in the resulting large-N equations are independent of N and finite, and
have a unique solution. In the high temperature, T > Tg = 1, regime the evolution reaches
equilibrium, while below Tg this is no longer the case. In the following we focus on the
relaxation in the low-temperature phase.

3. Analytic solution

In this section we summarize the analytic solution to the SK model [5].

3.1. Generic properties

The following properties appear to be quite generic of glassy dynamics.

Separation of timescales. After a (long) time t ′ there is a quick relaxation in a ‘short’ time-
delay t − t ′ and the self-correlation decays to a value qea, followed by a slower drift away.
The parameter qea is interpreted as the Edwards–Anderson parameter that represents the size
of a ‘trap’ or the ‘width of a channel’ in phase space. Within these traps the system is
fully ergodic while it becomes more and more difficult to escape a trap as time passes. The
correlation and response functions can thus be written in a way that explicitly separates the
terms corresponding to the relaxation within a trap:

C(t, t ′) = Cst (t, t
′) + Cag(t, t

′), R(t, t ′) = Rst (t, t
′) + Rag(t, t

′). (6)

Consistently, Cst (t, t
′) and Rst (t, t

′) are assumed to satisfy the equilibrium relations, i.e. time
homogeneity and the fluctuation–dissipation theorem (FDT),

Cst (t, t
′) = Cst (t − t ′)

Rst (t, t
′) = Rst (t − t ′)

Rst (t − t ′) = θ(t − t ′)
∂Cst (t − t ′)

∂t ′

and

Cst (0) = 1 − qea, limt−t ′→∞ Cst (t − t ′) = 0,

Cag(t, t) = qea, limt→∞ Cag(t, t
′) = 0.

Weak ergodicity breaking. The correlation satisfies

∂Cag(t, t
′)

∂t
� 0,

∂Cag(t, t
′)

∂t ′
� 0. (7)

This means that the system, after a given time t ′, starts drifting away (albeit slowly) until it
reaches the maximal distance (in general much larger than the size of a state) at sufficiently
long times t.

Weak long-term memory. The integrated linear response satisfies

lim
t→∞ χ(t, t ′) ≡ lim

t→∞

∫ t ′

0
dt ′′R(t, t ′′) = 0 ∀ fixed t ′. (8)

4
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χ(t, t ′) is the normalized (linear) response at time t to a constant small magnetic field applied
from t ′′ = 0 up to t ′′ = t ′, often called the ‘thermoremanent magnetization’. This hypothesis
is crucial, since the response function represents the memory the system has of what happened
at previous times: the weakness of the long-term memory implies that the system responds
to its past in an averaged way, the details of what takes place during a finite time tend to be
washed away (the ‘high-school’ effect). In interesting cases, the system however does not
have only short-term memory

lim
t→∞

∫ t

0
dt ′Rag(t, t

′) > 0 (9)

so that fields acting during an appreciable fraction of the distant past have a finite effect.

3.2. High-frequency ‘quasi-equilibrium’ dynamics

The Sompolinsky–Zippelius [3] results for the equilibrium dynamics within a pure state can
be reinterpreted in the out-of-equilibrium context to describe the first quick relaxation regime.
One finds that the self-correlation decays to the plateau at the Edwards–Anderson parameter
given by

(τ − qea) + q2
ea = 0 ⇒ qea = 1 +

√
1 − 4τ

2
∼ 1 − τ (10)

where τ = Tg − T .

Cst (t, t
′) ∼ A(t − t ′)−a(T ) (11)

with a(T ) being a nontrivial temperature-dependent exponent.

3.3. Aging regime

The dynamic equations in the aging regime can be solved by using the properties listed above.
The slowness of the dynamics allows one to neglect the effect of the time-derivative and
write down coupled integral equations for Cag and Rag. These equations are invariant under
reparametrizations of time, t → h(t), that transform the ‘fields’ Cag and Rag as

Cag(t, t
′) → Cag(h(t), h(t ′)), Rag(t, t

′) → ḣ(t ′)Rag(h(t), h(t ′)). (12)

This invariance deserves some explanation. The complete equations of motion have no
such symmetry. However, in the large-time limit, the equations for the ‘aging’ correlation and
responses Cag, Rag become less and less dependent of the timescale, because time-derivative
terms become less and less relevant. Only in the infinite time limit are time-derivatives
negligible and reparametrizations become a true symmetry.

(Broken) symmetries are related to divergent susceptibilities and large spontaneous
fluctuations. Here, these susceptibilities and fluctuations will diverge only in the large-time
(or vanishing frequency) limit.

Let us see this with a concrete example [13]. If we add to the equations of motion (4) a
forcing term of the form (5), one can show that aging disappears whatever the value of ε, and
correlations become stationary at large times:

Cag(t, t
′) = C

(
ln(t − t ′)

ε

)
. (13)

The time for such a stationary regime to be achieved grows with ε. Hence, we have that
the system has an arbitrarily large susceptibility with respect to the forces fi (because the
two-point correlation functions depend strongly on them), provided we wait long enough.

5
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One can also reason in terms of spontaneous fluctuations, as we shall see below, a path
that suggests the introduction of a ‘sigma model’ that encapsulates the fluctuations in the
‘almost-flat’ directions [14].

3.4. Correlation scales

The analysis of the aging regime in the SK model motivated the study of generic properties of
time correlation functions and the development of a complete classification of their possible
behaviour [5].

Take three ordered times t3 � t2 � t1, and the corresponding correlations are C(ti, tj ).
The monotonicity of the decay of the correlations with respect to the longer time (keeping the
shorter time fixed) and the shorter time (keeping the longer time fixed) allows us to derive
general properties that strongly constrain the possible scaling forms. Indeed, one can relate
any three correlation functions via triangle relations [5]

lim
t1→∞

C(t2,t1)=C21
C(t3,t2)=C32

C(t3, t1) = f (C32, C21), (14)

where f (x, y) is a function that determines the form of the triangles whose vertexes are
configurations at three large times. The fact that the limit exists is a reasonable working
assumption. (Note that we defined f using the correlation between the longest and the
intermediate as the first argument.)

The function f is time-reparametrization invariant, associative f (x, (y, z)) =
f ((x, y), z)), it has an identity and a zero, and it is bounded. Exploiting these properties
we showed that the most general f is composed of pieces satisfying either of the two forms:

f (x, y) = j−1(j (x)j (y)), isomorphic to the product. (15)

f (x, y) = min(x, y), ultrametric. (16)

This allows us to classify every possible ansatz. Note that for j equal to the identity the first
type of function becomes simply f (x, y) = xy, hence the name. It is also possible to prove
that the first kind of function (15) is only compatible with the time scaling

C(t2, t1) = j−1

(
h(t2)

h(t1)

)
, (17)

with h(t) being a monotonically growing function. The dynamics of a given model can occur
in two or more correlation scales. In particular, for the SK model

(i) f is isomorphic to the product for correlation values in the stationary regime, C > qea,
and h(t) = et/τ ;

(ii) f is ultrametric for correlation values in the aging regime, C < qea.

Even though dynamic ultrametricity seems mysterious at first sight there is a simple
graphical construction that allows one to test it. Take two times t3 > t1 such that C(t3, t1)

equals some prescribed value, say C(t3, t1) = 0.3 = C31. Plot now C(t3, t2) against C(t2, t1)

using t2, t1 � t2 � t3, as a parameter. Depending on the value of C31 with respect to qea

we find two possible plots. If C(t3, t1) > qea, for long enough t1, the function f becomes
isomorphic to the product. Plotting then C(t3, t2) for longer and longer t1, the construction
approaches a limit in which C(t3, t2) = j−1(j (C31)/j (C(t2, t1))). If, instead, C31 < qea, in
the long t1 limit the construction approaches a different curve.

A preasymptotic scaling that leads to ultrametricity in the limit of diverging times has
been found by Bertin and Bouchaud in their study of the dynamics of the critical trap model

6
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[15]. Indeed, it is simple to check that for any three correlations scaling as

C(t, t ′) ∼ ln(t − t ′)
ln t ′

(18)

relation (16) is recovered asymptotically.
Ultrametricity in time is also very clear for a driven system satisfying (13). In the limit of

small ε one can check that C(t3 − t1) = min[C(t3 − t2), C(t2 − t1)]. There is some evidence for
it in the 4D Edwards–Anderson (EA) model. In 3D instead the numerical data does not support
this scaling [16]. Whether this is due to the short times involved or if the asymptotic scaling
is different in 3D is still an open question that will probably never be answered numerically or
experimentally, as it was argued in [13] that time ultrametricity would take astronomic times
to show up even if present asymptotically.

3.5. Fluctuation–dissipation theorem (FDT)

The analytic solution is such that, in the asymptotic limit in which the waiting-time tw diverges
after N → ∞, the integrated linear response approaches the limit

lim
tw→∞

C(t,tw)=C

χ(t, tw) = χ(C) (19)

when tw and t diverge while keeping the correlation between them fixed to C [5]. Deriving
this relation with respect to the waiting time tw, one finds that the opposite of the inverse of
the slope of the curve χ(C) is a parameter that replaces temperature in the differential form
of the FDT. Thus, using equation (6) one defines

Teff(C) ≡ −(χ ′(C))−1 (20)

(kB = 1), that can be a function of the correlation. Under certain circumstances one can show
that this quantity has the properties of a temperature [17].

One of the advantages of this formulation is that, just as in the construction of
triangle relations, times have been ‘divided away’ and relation (6) is invariant under the
reparametrizations of time (12). Moreover, the functional form taken by χ(C) allows one to
classify glassy systems into sort of ‘universality classes’.

Equation (6) is easy to understand graphically. Let us take a waiting time tw, say equal
to 10 time units after the preparation of the system (by this we mean that the temperature of
the environment has been set to T at the initial time) and trace χ(t, tw) against C(t, tw) using
t as a parameter (t varies between tw and infinity). If we choose to work with a correlation
that is normalized to one at equal times, the parametric curve starts at the point (C(tw, tw) =
1, χ(tw, tw) = 0) and ends in the point (C(t → ∞, tw) → 0, χ(t → ∞, tw) = χ ). Now, let
us choose a longer waiting time, say tw = 100 time units, and reproduce this construction.
Equation (6) states that if one repeats this construction for a sufficiently long waiting time, the
parametric curve approaches a limit χ(C).

In the SK model one finds

T χ(C) =
{

1 − C, C > qea

1 − qea +
(
q2

ea − C2
)
, C < qea.

(21)

This result corresponds to having a succession of temporal scales each one with an effective
temperature, Teff(C).

The question as to whether this behaviour strictly applies to the finite-dimensional case
remains open. Fluctuation–dissipation violations, i.e. the existence of Teff �= T in the infinite
waiting-time limit, do exist, for instance, in systems with growing domains, but we still have no

7
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examples in which we are certain that Teff stays bounded away both from T and from infinity,
in the large waiting-time limit (the latter being the case for coarsening models). Numerical
simulations in finite dimensional spin-glass and structural glass models show a clear deviation
from FDT during the out-of-equilibrium relaxation but these are obtained for finite times and
although these times are relatively long it is hard to extract the truly asymptotic limit.

3.6. Functional dynamic order parameter

In [4] a set of generalized susceptibilities

I r(t) ≡ lim
N→∞

r!

Nr

∑
i1<...<ir

[
δ〈si1(t) . . . sir (t)〉

δfi1...ir

]
h=0

= r

∫ t

0
dt ′Cr−1(t, t ′)R(t, t ′) (22)

and their generating function Pd(q)

1 − lim
t→∞ lim

N→∞
r!

Nr

∑
i1<...<ir

[
δ〈si1(t) . . . sir (t)〉

δfi1...ir

]
h=0

=
∫ 1

0
dq ′Pd(q

′)q ′r (23)

were introduced. The physical meaning of Pd(q) is clear. If the order of large system size and
long time limits are reversed, the generating functional becomes the Parisi static functional
order parameter.

The analytic solution of the non-equilibrium dynamics of the SK model is such that
Pd(q) = P(q), even if the physical situations that these two-order parameters describe are
very different [5]. All generalized susceptibilities converge, then, to the equilibrium values
[18]. This result suggests that the landscape the SK dynamics visits at different long times
is similar to the one that characterizes the equilibrium pure states (though with finite barriers
separating the traps visited dynamically). Although at long but finite times with respect to
N the SK model explores regions of phase space that it will eventually leave never to return,
some geometrical properties of these regions coincide with those of the equilibrium states.

In other words, the landscape of the model is self-similar in the sense that the dynamics at
different (long) times explores entirely different regions of phase-space, and yet the geometry
of the trajectories (as characterized by the triangle relations), and the response–correlation
relation remain the same. More surprisingly, even if at all finite times the overlap between the
current configuration and an equilibrium state is zero, the response–correlation relation in the
SK model bears a relation to the equilibrium P(q), although this is not true for all mean-field
models.

A similar conclusion was reached in a slightly different context in [9]. The quantities
studies there were the staggered auto-correlation and linear response:

C(λ; t1, t2) ≡ 〈σλ(t1)σλ(t2)〉 =
∑
ij

〈λ|i〉〈λ|j 〉〈σi(t1)σj (t2)〉, (24)

R(λ; t1, t2) ≡
〈
δσλ(t1)

δfλ(t2)

〉
=

∑
ij

〈λ|i〉〈λ|j 〉
〈
δσi(t1)

δfj (t2)

〉
, (25)

where λ denotes the eigenvalues of the N × N random matrix Jij associated with the
eigenvectors |λ〉. |σ(t)〉 is the time-dependent N-dimensional vector of spins, σi(t) ≡ 〈i|σ(t)〉,
and σλ(t) ≡ 〈λ|σ(t)〉 are the staggered spin states. We showed that the staggered auto-
correlation distribution, C(λ, C), between two large and widely separated times t1 and t2 chosen

8
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such that C(t1, t2) = C � qea coincides with the static one computed with configurations
belonging to two equilibrium states with mutual overlap C. Moreover, if one stores the
configuration at times t2 and let the system evolve up to a time t3 such that again C(t2, t3) = C
one obtains the same form for the staggered correlation C(λ, t2, t3). (Note, however, that due
to the system’s slowing down, t2 − t1 < t3 − t2 if C < qea.)

The one-time quantities (e.g. nonlinear susceptibilities and staggered magnetization)
derived from the dynamics of the SK model thus coincide with those calculated in equilibrium.
This fact, though rather surprising for a mean-field model, has been derived under certain
assumptions for finite-dimensional models [37].

At the mean-field level, this coincidence holds for models that do not have a ‘threshold’
level below which the system cannot penetrate in finite times with respect to N. Examples
are, e.g., the SK model and the model of a manifold in a random potential with long-range
correlations [18, 19], both having a continuous set of correlation scales and being solved by a
full replica symmetry breaking (RSB) scheme at the static level. Instead, there is no reason
why the free-energy landscape explored dynamically should resemble the static one in models
with a threshold, such as the p-spin spherical model [4] (that is characterized, statically by a
one-step level of RSB).

Let us remark that the good agreement between the numerical calculation of C(λ, t, t)

for large t and the static distribution C(λ) (see figure 1) constitutes a rather detailed test of the
solution of the out-of-equilibrium dynamics for this model. Further studies of the organization
of metastable state and their relevance to the out-of-equilibrium relaxation of the SK model
appeared in [20].

3.7. Temperature cycling protocols

A means to study the dynamics in the glassy phase in more detail consists in following the
evolution of the sample under a complicated temperature history. The protocols that have
been more commonly used include temperature and field cycling within the low-temperature
phase [22]. Different types of glasses show rather different responses to the change in
external parameters. Spin-glasses show the puzzling phenomenon of reinitialization of aging
following a decrease in temperature, combined with the recall of the situation attained before
the downward jump when the original high temperature is restored. Remarkably, when
similar protocols were applied to structural glasses, e.g. in dielectric constant measurements of
glycerol by Leheny and Nagel, no substantial reinitialization was observed [25]. Experiments
in dipole glasses display an ‘intermediate’ behaviour in the sense that a temperature cycling
provokes strong asymmetric results, as in spin-glasses, while they also present very strong
dependencies on the cooling rate, a property that is not observed in spin-glasses though is very
common in structural glasses [26].

Mean-field inspired researchers have interpreted the experimental results of temperature
cycling experiments using a hierarchical dynamic picture inspired by the organization of
equilibrium states in the Parisi solution of the SK model. In this picture one assumes that
spin-glasses have a large number of metastable states that are organized in a hierarchical
fashion just like the equilibrium states. It is then proposed that the system is composed of
(independent) subsystems whose dynamics is given by the wandering in such a landscape [24].
An average over subsystems has to be invoked in order to obtain smooth results as observed
in experiments. Instead, droplet picture [28] oriented researchers found the outcome of the
same experiments unequivocal evidence for their favourite theory [23].

The outcome of temperature cycling experiments in spin-glasses can be understood within
the dynamic solution of the SK model. Moreover, the reasons why these effects should

9



J. Phys. A: Math. Theor. 41 (2008) 324018 L F Cugliandolo and J Kurchan

0.0

1.0

2.0

3.0
P(N,t;q) 

0.20.00.2
λ

0.0

1.0

ρ(
λ)

C
(λ

;t,
t)

t=600 MCs
t=2000 MCs
t=10000 MCs
ρ(λ)C(λ) equilibrium

Figure 1. Staggered correlation in the SK model at different times given in the key. ρ(λ) is
the density of eigenvalues of the interaction matrix Jij that in the large N limit approaches the
semi-circle law ρ(λ) = (1/2π)

√
2J − λ2 for λ ∈ [−2, 2] and zero otherwise, if the variance of

Jij is finite. The full line corresponds to the analytic prediction and the points to the numerical
Monte Carlo data [9]. Inset: the distribution of the overlap between two copies of the system
relaxing from different initial conditions at the same times given in the key. The full line in the
inset is the equilibrium overlap function P(q) derived by Parisi using the replica calculation with
a full replica-symmetry breaking Ansatz. The bell-shaped numerical curve demonstrates that the
sample is still far from equilibrium. Note that the distribution of the equal-time overlaps is not the
out-of-equilibrium dynamic Pd that does indeed coincide with Parisi’s equilibrium P.

be hardly observable in spin-glasses at very short times such as are inevitably involved in
simulations, and they are absent in structural glasses are clear within the analytic solution to
the dynamics of mean-field models [27].

The key dynamic property to explain the outcome of these experiments is the sharp
separation of correlation-scales in the asymptotic waiting-time limit. Take a fixed (but very
long) waiting time and let the system evolve further. Imagine at the subsequent time t the
self-correlation is C = q0 � qea. The decay below this value needs a time-delay that is
infinitely longer than t − tw. In other words, at any times t and tw the correlation (and linear
response) can be separated in two terms, a fast and a slow one, such that for all time delays
such that Cfast changes Cslow is fixed while, instead, if Cslow varies Cfast has reached its limiting
value.

The effect of a temperature jump is then very different on the fast and the slow scales. The
easiest way to visualize it is to use figure 4(a). Upon changing the external temperature the
FD plot is modified by changing the slope of the linear part representing the equilibrium FDT
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result and, in consequence, the intercept of the line with the curve part that remains unchanged
under the Parisi–Toulouse (PaT) hypothesis [35] that consists in two assertions:

(i) χ(C) is independent of T and H in the aging regime;
(ii) qea only depends on T and q0 only depends on H.

The near temperature-independence of χ(C) in the aging regime of the SK model has been
argued at the level of the Parisi static solution and carries through to the non-equilibrium
relaxation due to Pd(q) = P(q). It is also a very good approximation in the 4D EA model as
checked numerically. As far as we know, there are no tests of this hypothesis in the 3D case.

For temperature T the thin solid line in figure 4(a) represents the equilibrium result.
In the figure we show the FDT part for a different temperature that we called Tg(H) for
the purposes of the discussion of experimental measurements of FDT violations. Here we
interpret Tg(H) just as a higher temperature and q0(H) as its Edwards–Anderson parameter
(there is no applied field). For temperature Tg(H) the equilibrium result is the dashed straight
line. The thick black curved line is the same at both temperatures. The effect of a temperature
change is then quite different on the slow and fast correlation scales. It corresponds to the
clockwise or anticlockwise motion of the straight line part of the plot. The slow scales are
just modified by a time-parametrization (12), independently of the jump being positive or
negative. The scales between q0 and qea are instead created or destroyed (restarted or erased)
by the negative and positive temperature jumps. This intuitive idea—very close to the one
put forward in the hierarchical explanation of temperature jump experiments—can be made
precise and implemented in analytic calculations [27].

An argument along the same lines allows one to explain the outcome of field jump
experiments.

The phenomenology of structural glasses is described by models of the p-spin type that
realize the random first order transition scenario [29]. The aging dynamics of these systems
occurs in only one timescale, typically described by a simple t/tw scaling. In these cases
the argument described above does not apply (the decay of the correlation below any value
C < qea is not infinitely slower than the one that occurred before). This yields a theoretical
justification of the fact that the outcome of temperature variation experiments in other glassy
systems are quite different from the ones in spin-glasses.

3.8. Fluctuations: towards a sigma model approach

Observables in finite-size systems fluctuate. A theory for the disorder-averaged, noise-
induced dynamic fluctuations of finite dimensional glassy systems was proposed in [30].
These fluctuations are not induced by the particular realization of quenched disorder but
should be generated dynamically in models in which time-parametrization invariance develops
asymptotically.

The natural counterpart to the coarse-grained local correlations and responses in finite
dimensional models is, for a fully connected model, the global quantity itself. The latter
fluctuates if the fully-connected system has a finite size.

One of the main consequences of the time-parametrization invariance theory of
fluctuations is that the fluctuations in the fluctuation–dissipation relation in the aging regime
should distribute along the global χ(C) curve. In this subsection we review the analysis of
such fluctuations obtained numerically for finite-size SK models.

Finite-size fluctuations of global quantities. If one wishes to show that a given system with
a broken symmetry tends to behave like a Sigma model in some limit, what one has to do is
to plot the fluctuations of the ‘radial’ variables that are left invariant by the group, and check
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Figure 2. Projection of the joint probability distribution function (PDF) for the global susceptibility
and correlations of the SK model with N = 512 and β = 2.5. The strength of the applied field is
η = 0.25. A coarse-graining over time is done using τ = 2 for tw = 64 MCs and t = 65.70 MCs, and
τt = 2, 4, 8 and 16 MCs for t = 128, 256, 512 and 1024 MCs. The crosses indicate values averaged
over the distribution, the straight line is the prediction from the FDT. In panel (a) the contour
levels are chosen at heights corresponding to 95%, 90% and 82% of the maximum in the PDF
for the global correlations evaluated at tw = 64 MCs and t = 1024 MCs. In panel (b) the contour
levels are at 90% of the maximum and they correspond to the PDFs calculated at tw = 64 MCs and
t = 128, 256, 512, 1024 MCs from right to left. The figure is taken from [31].

that they become vanishingly small compared to those of the ‘angular’ variables generated by
the group itself. In precisely that spirit, in order to show that the system’s fluctuations explore
preferentially the (almost) flat directions generated by reparametrization invariance, one can
plot the fluctuations of correlations and responses in such a way as to show that fluctuations
of quantities left invariant by this group (the departures from a χ versus C curve) become
negligible with respect to fluctuations generated by reparametrizations (along the χ versus C
curve).

Figure 2 shows the level curves of the joint probability of the global susceptibility and
correlation of an SK model for a system with N = 512 at T = 0.4. The distribution
functions were obtained using 105 pairs (C(t, tw), χ(t, tw)) with 104 different noise histories,
and repeating this procedure with 10 different realizations of disorder. The straight line
represents the equilibrium FDT. We see that the probability distribution is peaked on the
global T χ(C) curve. Thus, we conclude that different histories tend to be affected by random
time reparametrizations, just as a Sigma model tends to fluctuate along the angles spanned by
the group. Very similar results have been obtained in the 3D EA model [31].

Fluctuations in the noise-averaged local quantities. The existence of soft modes for time-
parametrization is a feature of slow dynamics, quite independent of the presence of quenched
disorder. In order to stress this point, figure 3 shows the distribution over sample realizations
of correlations and response function figure 2, the data for each sample being averaged over
the noise. The orientation of the contour levels does not follow the T χ(C) curve but, instead,
it is approximately parallel to the FDT straight line. Clearly, the sample-to-sample variations
have nothing to do with the reparametrization invariance, which is a dynamic effect. Again,
very similar results are obtained in the 3D EA model.

4. Experiments

The SK model is, undoubtedly, the mean-field model of spin-glasses. One would then like to
confront its dynamic behaviour to the one observed experimentally. In this section we briefly
do this by discussing some salient experimental results.
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Figure 3. Projection of the joint PDF for the noise-averaged ‘local’ susceptibilities and correlations
of the SK model with N = 512 and β = 2.5. The strength of the applied field is η = 0.125. The
coarse-graining times τ are chosen as in figure 2. The crosses indicate values averaged over the
distribution, the straight line is the prediction from the FDT. In panel (a) the contour levels are
chosen at heights corresponding to 90%, 85%, 80% and they correspond to times tw = 64 MCs and
t = 1024 MCs. In panel (b) the contour levels are at 80% and they correspond to the joint PDF at
tw = 64 MCs and t = 1024 MCs. The figure is taken from [31].

4.1. Isothermal aging

Several groups studied the relaxation of spin-glasses using ac-susceptibility and dc
magnetization measurements. The experimental data—as well as the numerical data from
simulations of the 3D EA model—are rather well described by a much simpler time dependence
than the one found in the SK model. More precisely, neither the ultrametric relation (16) nor
its pre-asymptotic form (18) fits the data satisfactorily. Instead, the data are rather accurately
described by a two-scale scenario with an aging regime characterized by an enhanced power
law, h(t) ∝ elna(t/t0)), with a ∼ 2, that weakly deviates from a simple power [21]. Note that
this scaling is also different from the one predicted by the droplet model [28].

4.2. Temperature cycling experiments

Temperature cycling experiments are amongst the most striking and beautiful ones made with
spin-glasses. As mentioned above, the SK model responds to temperature cycling in a manner
qualitatively very close to that of experiments. What remains a mystery, however, is that
the memory effects in the SK model arise thanks to the existence of many widely-separated
timescales, while in the experimental system there seems to be only a single scale.

4.3. Fluctuation–dissipation relation

Direct measurements. Deviations from the FDT should be tested by measuring the dynamic
induced and spontaneous fluctuations of a chosen observable using the same experimental
device. In a remarkable series of experiments, Hérisson and Ocio carried out such a study
focusing on the magnetization of an isolating spin-glass sample [32]. Their results for
correlation and linear response functions are compatible with the two-scale scenario and
the enhanced power law aging timescale. The direct comparison between integrated linear
response and correlation function yields an FD plot that has been interpreted by the authors
as being similar to the curved shape of the SK model. It should be stressed, however, that this
interpretation is inconsistent with the understanding of the fluctuation–dissipation deviations
as being related to the existence of effective temperatures [17], since the whole decay occurs
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Figure 4. Left: sketch of the χ versus C plot. The thick curve represents the master curve χag(C)

that, within the PaT approximation, is temperature and field independent. The thin straight line
has slope −1/T (T < Tg) and represents equation (26). The dashed straight line has a slope
−1/Tg(H) and joins (qd , 0) to (χf c(H), q0(H)). Right: χag(C) plot for CuMn at 1% and 2%.
The vertical axis is normalized by the susceptibility at the critical temperature in zero field (χ0).
The horizontal axis is normalized by qd . The crosses are numerical results for the 3D EA model
[36]. The inset shows the inverse FC and ZFC susceptibilities as functions of temperature. The figure
is taken from [33].

in a single timescale. Moreover, in our opinion, the resulting FD plot cannot be really
distinguished from a broken straight line which is consistent with a two-scale scenario and the
effective temperature interpretation. The same proviso applies to the numerical data for the
3D EA model.

Zero-field and field-cooled magnetization An indirect study of the fluctuation–dissipation
relation using several sets of experimental data obtained from various samples was presented
in [33]. The proposal, motivated by discussions with DS Sherrington during a visit to the
University of Oxford, is to use the well-known difference between the field-cooled and zero-
field cooled magnetization in the low T phase to infer the deviation from the fluctuation–
dissipation relation between spontaneous and induced fluctuations.

The approach uses a dynamic extension of the Parisi–Toulouse (PaT) approximation [35]
that we explained above. The PaT approximation allows us to estimate the C-dependence
of the susceptibility using exclusively response results, thus circumventing the difficulties
inherent to noise measurements. Deviations from the Curie–Weiss law due to a non-vanishing
average of the exchange coupling in real spin-glasses were also taken into account.

The strategy is to use data taken under T and H conditions such that the system is at the
limit of validity of FDT, i.e. C(t, tw) ∼ qea. The point {qea, χ(qea)} is the intersection between
the straight part (FDT regime) and the aging part of χ(C) where

χ(qea) = lim
t−tw→∞ lim

tw→∞ χ(t, tw) = 1

T
(qd − qea) (26)

and to associate χ(qea) with the zero-field cooled susceptibility χzfc is measured
experimentally. qd is the equal time correlation that is not necessarily one but can be obtained
from limT →0 qea. The locus of the points obtained by varying T spans a master curve χag(C)

which, by the PaT hypothesis, is field and temperature independent. At a given working
temperature T the actual χ(C) curve consists of a straight line with slope −1/T joining
(qd, 0) and (qea, χ(qea)) and a second part given by χag(C). The method of construction
is explained in [33] and it is illustrated in figure 4. A complementary argument uses the

14



J. Phys. A: Math. Theor. 41 (2008) 324018 L F Cugliandolo and J Kurchan

field-cooled magnetization to construct χag(C) by spanning χFC(H) = 1/Tg(H)(qd −q0(H))

as a function of H.
The analysis is most reliable for CuMn, a system in which the Curie–Weiss law as well

as the PaT approximation are very well verified. Figure 4 shows the χag(C) curve determined
using the ZFC data of Nagata et al for two concentrations [34]. There are no experimental
points for C/qd > 0.8 that correspond to rather low temperatures. We know, however, that
χ(C) tends to zero as C → qd since χzf c(T = 0) = 0. In addition, the slope dχ/dC should
be infinite at C = qd so that q = qd only at T = 0. The validity of the hypotheses can be
judged by the inset where we show the temperature dependence of the inverse susceptibility
for the 1.08% compound. A Curie–Weiss law with θ ≈ 0 holds accurately for all T � Tg .
The T-independence of χf c required by the PaT approximation is also well verified below the
transition. The same is true for the 2.02% sample. For comparison, we also show the curve
χ(C) for the 3D EA model, at T = 0.7(< Tg) and H = 0, obtained numerically in [36].
The agreement between the numerical results and the experimental data for the 1.08% sample
is remarkable. It may be fortuitous, however, since the results for the 2.02% sample deviate
from it. In fact, one must note that χ(C) is not a universal function. For example, it depends
on the details of the Hamiltonian (Heisenberg, Ising and, in general, the level of anisotropy)
even at the mean-field level. Thus, there is no reason to expect universality in real systems.

Note that in real samples a spin-glass transition in a field may not exist. However, even
if this were the case, the system should remain below a slowly time-dependent pseudo de
Almeida–Thouless (AT) line for still relatively long times: it ages and behaves as a true
(out-of-equilibrium) glass with a non-trivial χ(C) that would eventually become a straight
line with slope −1/T .

Another important issue is the asymptotic (tw → ∞) form of the χag(C) curve. Even if
the system never equilibrates, the χag(C) curve may still be a very slowly varying function of
tw, eventually reaching a form different from that observed experimentally. One is not in a
position to discard this possibility.

As was mentioned above, equilibrium and large-time non-equilibrium one-time quantities
are expected (under certain assumptions) to coincide [37]. If these hypotheses are warranted
for spin glasses, the slope of the dynamic χ(C), for an infinite system in the large-tw limit
should coincide with the static x(q) as defined by the probability of overlaps of configurations
taken with the Gibbs measure, the connection being established through the generalized
susceptibilities as explained above. The determination of a non-trivial χ(C) would thus imply
a non-trivial x(q) and would hence validate Parisi’s solution. The problem, as is usual in these
systems, lies in the fact that the dynamics, even in the experimental case, are confined to quite
short times.

Numerical experiments have more recently reached timescales almost comparable to the
experimental ones. As a consequence, it is now possible to analyse the slow drifts in the
field cooled magnetization, and perhaps interpret this in terms of a slowly vanishing Almeida–
Thouless line [39].

5. Conclusion

From the dynamic point of view, the Sherrington–Kirkpatrick model has some aspects in which
it resembles experimental systems, and some in which it does not. Amongst the resemblances,
as we have seen, one can count the fluctuation–dissipation characteristics and the remarkable
temperature-cycling properties of memory loss and recovery.

On the other hand, there is the inescapable fact that one does not see any evidence of
dynamic ultrametricty either in experimental systems or in their numeric counterparts, while
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these are easily observable in simulations of the SK model [38]. Even assuming that at longer
times the separation of timescales would develop, this can be estimated to happen not before
astronomic times [13].

As mentioned in the previous section, a non-trivial χ(C) at very long times is an indication
of a nontrivial Parisi function. The problem is that experimentally accessible times are not that
long—coherence length scales of around 20 are estimated in the best of cases. An apparently
nontrivial χ(C) that would eventually become trivial—or an apparent Almeida–Thouless line
disappearing at long times—would be an example of a phenomenon that is a permanent source
of confusion: finite-size systems in equilibrium, and infinite-size systems at short times, tend
to have a pre-asymptotic behaviour that looks qualitatively mean-field like. This tendency
can be judged as positive, because the mean-field picture is then a qualitative model of what
we see in practice, or negative, because it does not allow us to distinguish properly between
theories.

The Sherrington–Kirkpatrick model was originally designed as a toy model of spin glass,
which would serve as a straightforward, practical starting point. Fortunately for us, this
expectation proved unfounded, as over 30 years of surprises and amusement have shown.
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